
epicycles, flywheels, and (widening) gyres:epicycles, flywheels, and (widening) gyres:
UNIX Network Programming in a Manycore NUMA WorldUNIX Network Programming in a Manycore NUMA World

It's high time UNIX application developers had a
robust, parallel, architecture­sensitive
unification of their various event sources,
engineered with explicit consideration for manycore
processing environments and non­uniform memory
access.

Enter libtorque.

nick black <nickblack@linux.com> for GTLUG 2012-04-18
copyright © nick black 2012. information wants to be free: licensed under the creative commons attribution 3.0 license (unported).

mailto:nickblack@linux.com
http://creativecommons.org/licenses/by/3.0/

copyright © 2012 nick black <nickblack@linux.com> 2

Hmm. I was told there would be computer security research?Hmm. I was told there would be computer security research?

● I/O is indeed the red-headed stepchild of Arch/HPC/Security

– Dependencies on (woeful) buses, (divergent) devices

– Irregular, control and dataflow-wise

● Branch predictors need not apply

● Hardware prefetching's worst nightmare

– Largely untamed by the locality principles

● “Simulator economy” is built atop SPEC CPU

– SPECWeb doesn't drive architecture publishing

● P&H4 mentions it once, P&H2 not a single time.

● Penryn's SSE4.2 “networking instructions”: Fast string operations

– Sun's Rock, T1, T2 are doing something a bit more interesting

– (MOVNTDQA ends up the network-relevant SSE4 instruction)

● How do the other half live...?

copyright © 2012 nick black <nickblack@linux.com> 3

Network Network programmersprogrammers returned the warm feelings returned the warm feelings

● UNP3, APIUE2: no mention of caches

– These are great, canonical books. Still, not a single word!

– Very minimal coverage of mmap()

– Dirtying cache and the memory wall weren't yet so relevant!

● Linux was developed on 16-33MHz 80386's

● Threads introduced primarily as a control mechanism in UNP2, UNP3.

● Described from an API perspective in APIUE2, Butenhof

– Neither go into performance details, especially architectural

● No standard interfaces export architectural details to userspace

● Protocols designed without architectural (alignment, cache) concerns

● The game was all about saving system calls and writing fast poll() loops.

● There is a spectre haunting the Internet!

– Underabundant architectural wherewithal hobbles UNIX programming

copyright © 2012 nick black <nickblack@linux.com> 4

Internetworking enters the mainstream, with a target of “C10K”Internetworking enters the mainstream, with a target of “C10K”

● The Internet's explosion bears three great networking legacies:

– Wave-division multiplexing and coastal abundances of SMF

– Utter dominance by Ethernet and the Inverted Hourglass

– Shift from poll() to asynchronous I/O and stateful event queues

● What university/company can provide the most FTP service?

– cdrom.com: 10,000 concurrent connections on 1Gbps NIC (1998)

● A golden age of radical and competitive network server design

– User-space networking (Mach, vJ channels, CSPF, BPF, PathFinder DPF)

– Powerful, flexible open source networking stacks. ACE. Erlang.

– User/kernelspace blend (Clark upcalls, Tuxhttpd, ADC/VIA)

– Scheduler activations, AMPED, LAIO, threads in pools and on demand

– LinuxThreads/NGPT/NPTL, libc_r/libkse/libthr, GNUPth, oh my!

● No clear winners (look at Apache). Machines got faster, and cheaper.

– Dan Kegel (CT) collected state-of-the-art at “The C10K Problem“.

http://www.kegel.com/c10k.html

copyright © 2012 nick black <nickblack@linux.com> 5

Digression: Stateful event queues on Linux and FreeBSDDigression: Stateful event queues on Linux and FreeBSD

● Linux introduced epoll() in 2.5.44 (2002-10)

● FreeBSD introduced kqueue() in 4.1 (2006-04)

● Both return a file descriptor (int epoll_create(int), int kqueue(void))

● Notification masks are kept in the kernel:

– epoll_ctl() performs EPOLL_CTL_ADD, EPOLL_CTL_DEL (1 op per invoke)

– kevent() takes both a changeset and eventset (N ops per invoke)

● Unification of (some) event sources:

– EVFILT_READ, EVFILT_WRITE, _AIO, _SIGNAL, _TIMER, _VNODE, _NETDEV

– epoll is fd-only; use 2.6.25's signal- and timerfds (or epoll_pwait())

● Both level- and edge-triggered modes:

– EPOLLET with epoll_ctl(), or EV_CLEAR with kevent()

● On Solaris: /dev/poll, and all Event Ports.

– Ummm, honk if you ♥ Solaris.

copyright © 2012 nick black <nickblack@linux.com> 6

Digression: POSIX Asynchronous I/ODigression: POSIX Asynchronous I/O

● Please do not confuse with F_GETOWN, F_GETSIG args to fcntl()!

● Defined in POSIX.1b. Only recently (circa 2007) well-supported on Linux.

● struct aiocb provides the user/kernel data definition

● aio_write(), aio_read(), aio_fsync()

● User notification: SIGEV_NONE, SIGEV_SIGNAL, SIGEV_THREAD

● aio_suspend, aio_cancel, aio_error, aio_return, scary aio_init

● Asynchronous I/O would always be more effective in a perfect world

● Our world is not perfect, and includes:

– Very short I/O transactions, able to be completed “immediately”

– Heavy instruction footprints in the kernel, significant signal overhead

copyright © 2012 nick black <nickblack@linux.com> 7

Digression: Threading considerations regarding I/O primitivesDigression: Threading considerations regarding I/O primitives

● Epoll and kqueue file descriptors (henceforth “efds”) are themselves
pollable, returning a read indication if they have events ready.

● Efds may be added to each other's event notification masks, but not their
own (this will result in EINVAL).

● Closing a file descriptor removes it from all efds' event notification
masks, and purges outstanding events, *iff* there are no dup(2)d copies
open. It is safe to do this while a thread is waiting on the efd.

● Threads may make concurrent use of efds, even with inexclusive event
notification masks; all are reported any events for shared fds (in O(n)).

● epoll_wait() is a cancellation point. kevent() is not.

● A thread may manipulate another efd's event notification mask, even if
some thread is blocking on that efd.

● It is not specified whether concurrent uses of the same efd are safe.

copyright © 2012 nick black <nickblack@linux.com> 8

The story as of 2006The story as of 2006
● Linux's networking stack has become a multithreaded beauty of a beast

– NAPI, IRQ distribution/coalescing, TOE, RCU, universal jhashes, tc

● Zero-copy networking via sendfile() and/or COW is developing

– fbufs, IO-Lite, TCOW, scatter-gather (readv() and writev())

● Kernel development moves to throughput, wireless, power saving

– Low-latency, scalable userspace primarily a focus of financial sector(!)

– Dynamic page generation chews up the cycles of HTTP servers

– Responsive event-based networking is easy. Cost effectiveness is hard.

● Launch a thread per conn, let 'em fight it out in the scheduler.

– Laboratory loads are easily served. Attack loads are hard.

● Distribute event sources statically among per-CPU threads.

– High-throughput event-based networking is easy. Low latency is hard.

● Sub-ms I/O requires computation techniques from HPC.

● George Varghese publishes the inimitable Network Algorithmics

● Drepper's “What Every Programmer Should Know About Memory“

● Around the world, programmers find out everything they know is wrong.

http://lartc.org/
http://www.amazon.com/Network-Algorithmics-Interdisciplinary-Designing-Networking/dp/0120884771
http://people.redhat.com/drepper/cpumemory.pdf

copyright © 2012 nick black <nickblack@linux.com> 9

Moore's Law sounds a barbaric YAWP over the rooftops of Santa ClaraMoore's Law sounds a barbaric YAWP over the rooftops of Santa Clara

● AMD keeps the good times rolling with dual-core 90nm Denmark Opteron

● Intel comes back with 65nm Yonah (CD), Conroe and Merom (C2D)

● Martin J. Bligh's mjb- patchset, SGI's userspace tools, FreeBSD 7:

– Linux by now scaling to thousands of processors (hierarchal RCU etc)

– NUMA support for Linux and FreeBSD

– Ingo Molnar's 4G/4G patch for systems with ~64G of RAM

– FreeBSD 7's new ULE scheduler brings it back into the 16+ game

● CPUSet (thread and process affinity masks) are added to Linux, FreeBSD

● L2 and giant L3 caches, streamlined coherence, HT and QPI, DDR2 and 3

● Gradual replacement of ferromag+mech storage with MLC FM / NROM

● Multicore + Vtx (Vanderpool) / SVM (Pacifica) → Virtualization
everywhere (hear that? the sound of more packet-handling latency?).

● IOMMU's hit the mainstream, clearing the path for DCA

copyright © 2012 nick black <nickblack@linux.com> 10

Open source networking multicore-readiness (as of 2011-11)Open source networking multicore-readiness (as of 2011-11)

● Apache 2.2's can serve from a naïve worker pool. FAIL?

– If you're not using an MT-unsafe module.

– Like say, PHP. FAIL.

● OpenSSH 5.1 uses threads only during authentication. FAIL.

– Take a look at Pittsburgh SCC's HPN-SSH

● OpenVPN had threading in 1.0, for authentication only. FAIL.

– It was purged for 2.0. DIRECTION FAIL.

● Each can spawn or entask processes per connection, but (as always) this wastes cycles and
memory, neutralizes cache, and binds to CPUs only at the cost of responsiveness in
asymmetric loads.

● nginx... is unthreaded, FAIL! nginx must be spawned; this is actually a
more reasonable model.

– If you can't thread intelligently, please, don't thread at all. I'm looking at you,
Apache's MinSpareThreads and MaxSpareThreads!

● libev, libevent, liboop, coronet, GUASI: Not one manages threading.

● One project is attempting something similar...Tcl-CORE, of all things(!)

copyright © 2012 nick black <nickblack@linux.com> 11

Why insist on internal scheduling? Why insist on internal scheduling?

● Why the emphasis on controlling scheduling in this lowest layer of code
(the event handler)? Everyone else is getting away with ignoring it.

– We're not controlling scheduling as a first-order objective. We assume
that the CPUSet provided on entry is to be utilized completely, pin
ourselves to each CPU in turn, and deposit a thread there. They don't
compete.

– The actual “scheduling”, in terms of what processes run where, when, is
a secondary effect of I/O availability. We schedule the handling of
reported events; if there are events to handle, threads will run.

● What's wrong with an event interface per process, a process per core?

– We must be able to redistribute either event sources or event instances,
or gross asymmetries can exist no matter the scheduler. These
processes themselves would need bifurcate; just do it and be done.

● What about adding all event sources to a universal notification mask?

– All listening threads would receive event notifications. Think thundering
herds, a need to lock on almost any event, and increased latency.

● Only one process could block on the efd at a time, perhaps?

– We could share the efd, sure, but we'd need also share all referenced file
descriptors. That's an awful lot of SCM_RIGHTS passed over
PF_UNIX! FreeBSD can't do this at all without rfork(RFFDG).

copyright © 2012 nick black <nickblack@linux.com> 12

Multiprocessing effects: grokked. What about Multiprocessing effects: grokked. What about μμ--architecture and NUMA?architecture and NUMA?

● NUMA is relatively new to both Linux and FreeBSD, and essentially
unheard of in the open source application space.

● We're still waiting on a comfortably-scalable GNU Libc malloc() (no,
replacing Lea's with Gloger's ptmalloc only got to ~8), while FreeBSD's
jemalloc has no NUMA support. Since we're already largely per-core,
Hoard or tcmalloc are a bit heavyweight; we generally oughtn't lock.

● Our event distribution scheme is parameterized almost completely by
system topology, which is improved by knowledge of NUMA properties.

● μ-architecture will play a major role in our allocation API; buffers
especially will be shaped and placed in consideration of cache and TLB
parameters, as will data known to be shared or unshared between various
types of connections.

● Cache and TLB parameters will shape the frequency of callbacks when
processing large amounts of data.

● Read-only data shared among connections will result in strong
localization for those types of connections. Efforts will be taken to ensure
unshared data is not falsely shared.

● Instruction cache and TLB parameters will shape event distribution.

http://www.hoard.org/
http://goog-perftools.sourceforge.net/doc/tcmalloc.html

copyright © 2012 nick black <nickblack@linux.com> 13

Digression: POSIX Multiprocessing APIs are Decadent and DepravedDigression: POSIX Multiprocessing APIs are Decadent and Depraved

● I'll let the screenshot speak for itself:

● Pretty underwhelming, team.

● Stay classy, x86.

copyright © 2012 nick black <nickblack@linux.com> 14

Programmatic, deterministic detection and enumeration of topologyProgrammatic, deterministic detection and enumeration of topology

● From libtorque/hardware/topology.h:

● We do not yet consider distributed systems, though they ought work in
this model. One real problem is scaling failure with a complex base level.

// The scheduling universe is defined by an ordered set of $N > 1$ levels
// $L_0..L_n$. A scheduling group is a structural isomorphism, a counter C of
// instances, and the C affinity masks of corresponding processing elements.
// A level contains $N > 0$ scheduling groups and a description of hardware
// unique to that level. A unique surjection from classes of usable hardware to
// levels (no hardware class is described at two levels, and all usable
// hardware is described by the scheduling universe) is defined by via our
// discovery algorithm.

// The reality compactifies things a bit, but in theory:
// Level L_0 consists of scheduling groups over threads and processor types.
// Each successive level $L_{n+1}, n >= 0$ extends L_n's elements. For each
// element $E \in L_n$, extend E through those paths reachable at equal cost
// from all elements in E.
//
// Examples:
// A uniprocessor, no matter its memories, is a single topology level.
// 2 unicore, unithread SMP processors with distinct L1 and shared L2 are two
// topology levels: 2x{proc + L1} and {L2 + memory}. Split the L2, and they
// remain two topology levels: 2x{proc + L1 + L2} and {memory}. Combine both
// caches for a single level: {2proc + L1 + L2 + memory}. Sum over a level's
// processors' threads for a thread count.
//
// Note that SMT does not come into play in shaping the topology hierarchy,
// only in calculating the number of threads in a topological group.

copyright © 2012 nick black <nickblack@linux.com> 15

Affinities, APICs, and Process Identifiers, Oh My!Affinities, APICs, and Process Identifiers, Oh My!

● Four meaningful maps exist on our allocated processing elements:

● Affinity ID, used with the CPU affinity subsystem (aid < CPU_SETSIZE)

– We probe our inherited affinity mask on initialization to determine
allocated processors (the only ones we care about).

– We pin in succession, spawning a thread on each. This thread detects the
CPU, and begins blocking on its efd.

● APIC (Advanced Programmable Interrupt Controller) ID. 8 or 32 bits.

– This is how IPI's are addressed, and how the BMP and Aps are chosen in
the Intel Multiprocessor Specification (current as of v1.4). 8 bits.

– Since Nehalem Core i7's, x2APIC support is provided. This yields a 32-bit
EAPIC (EAPIC % 0xffu == APIC).

– x86 topology is determined via bitslicing of APIC's

– AMD supports the same values, but with different names and CPUID
methodologies. Thanks bunches, AMD!

● Our topology structure (libtorque_topt) knows each schedulable
processor, and maps them to libtorque_cput's.

● After initialization, a bijection exists between processors and tIDs.

copyright © 2012 nick black <nickblack@linux.com> 16

Epicycloidal movement around the scheduling group isomorphismEpicycloidal movement around the scheduling group isomorphism

● Unshared memory? Space it out:

● Sharing memory? Huddle together

● Decide about exploiting logical siblings based on distribution of shared accesses (how?)

– Shared writes are important to keep close (minimize true coherence)

– Unshared even more important (minimize false coherence)

`

Logical cores (if sufficient cache) Minimize trips off-core

Physical cores (if sufficient cache) Minimize trips off-die, save power

Physical packages Minimize interconnect bw consumed,
save power

NUMA nodes Minimize memory bw consumed
Minimize memory consumption

Split up the resource... ...for valuable results.

NUMA nodes Balance memory bandwidth, use

Physical packages Effectively utilize different caches

Physical cores Engage all execution units

Logical cores (if data won't conflict) Hide latency

copyright © 2012 nick black <nickblack@linux.com> 17

Let's see one of these topologies!Let's see one of these topologies!

recombinator:
 4GB / 4MB unified / 32K each,
 Core 2 Duo 6600 @2.40GHz
 1 package, 2 cores, 2 PE's

dumbledore:
 128GB / 8MB unified /
 2x Core i7 E5520 @ 2.27GHz,
 256K unified / 32K each
 2 packages, 4 cores, 16 PE's

WOPR:
 64G / 4MB unified /
 4x Xeon X7350 @2.93GHz,
 32K each
 4 packages, 4 cores, 16 PE's

(output from archdetect, commit id
 dc45b508fa937ce77bd58985ed84b9e63b1c376e)

http://github.com/dankamongmen/libtorque/commit/dc45b508fa937ce77bd58985ed84b9e63b1c376e

copyright © 2012 nick black <nickblack@linux.com> 18

Can't the operating system or libc make these decisions better?Can't the operating system or libc make these decisions better?

● They probably could, if they provided the necessary interfaces. They
don't; OS/libc interfaces are hard to change once issued, and this isn't
general enough for either.

● We introduce the idea of connection coloring, where the location (modulo
appropriate cache block sizes) and size of known per-connection
allocations provide a jigsaw-like method for avoiding cache conflicts.

● Userspace networking won't come to libtorque until 2.0-series
development. Until that time, we're resigned to at least one memory→
memory copy during RX. Perform this mem→reg with minimal cache.

● Working out our instruction footprint is trivial with dl_iterate_phdr()
and libelf, especially with DWARF debugging info (see pfunct -s). We
can determine what's likely to step on one another, and distance them;
we can determine what's likely to exploit locality, and bind them.

● Remember: Under a 3G/1G, 2G/2G, or 1G/3G split, the kernel lives in its
own slice of the (shared) address space. We can still trash one another's
TLBs and caches, though; detect this, or walk the kernel binary.

● If that turns out to be the case, we just don't include it! Libtorque is all
about staggered improvement with each step while maintaining scale.

copyright © 2012 nick black <nickblack@linux.com> 19

What all can we exploit on a modern server?What all can we exploit on a modern server?
● ...just like kids in a candy store...Resource What we can do Done yet? Bugs entry?

Differentiated x86 functionality
(SIMD, etc)

Expose the best code for large
buffer copies, etc

PARTIAL. Detect it, but neither feedback nor
choices to make.

Logical cores (SMT) Run more threads of our
(memory, branch, syscall)-
intensive code on one core,
hiding latency.

YES. We fully detect topology, map it to
affinity ID's, and schedule on all SMT cores
while breaking up unrelated sources.

Share L1 cache, TLBs. NO. Tie-breaker for logical core dispatch
needs dep on sharing.

Multiple cores Run more threads. YES. We dispatch to distinct cores before
overloading logical cores.

Share L2 cache, NUMA. NO. See SMT-2.

Cache line lengths Align our arena allocator. NO. We detect cache topology and
properties, but there's no feedback.

Hard-affinity APIs Prevent context switches, some
migrations.

YES. We pin the main thread to each CPU in
turn, then spawn.

Multisize TLBs Minimize TLB cost NO. See “Cache line lengths”.

Direct cache access Avoid cache conflicts PARTIAL. Detect it, but no feedback.

DIMMs Minimize precharge delay NO. SPD→I²C→SMBIOS→DMI.

Atomicity of aligned ops RCU N/A. All hotpaths are atm lockless.

copyright © 2012 nick black <nickblack@linux.com> 20

Continuation-Passing StyleContinuation-Passing Style

● Term coined by Sussman and Steele (1975) in AI Note 349

– “Continuation” itself is due van Wijngaarden (1964) regarding Algol 60

● A continuation sums up control state, to which one will later return

– Compare and contrast: GNU Pth, C exception libraries, setjmp()

– Compare and contrast: Conway and Knuth's coroutines

● The continuation-passing style consumes a function representing
computation not yet done, aborting the computation by returning a value.

– C doesn't deal well with saguaro stacks; we return a value other than 0 to
abort. We exploit edge-triggered events to achieve lockless handling,
though, so a fresh event mask must be reestablished each call.

– Nota bene: a transaction-based protocol like HTTP can still churn us
right off the stack without explicit limiting of C-Passings.

● Nota bene: We need an event cache anyway (see epoll(7)), so this
can be cleanly addressed there.

● The standard approach to extendable event machines; see Alan Cox et
al's “Lightweight Asynchronous I/O” (2004), Flash's “Asymmetric
Multiprocess Event-Driven” (AMPED) architecture (1999), or any of the
major unthreaded event libraries.

ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-349.pdf
http://www.gnu.org/software/pth/

copyright © 2012 nick black <nickblack@linux.com> 21

Flywheel EconomicsFlywheel Economics

● Consider a design space S with n parameters of m criteria. Map criteria
vectors {Y} via f: ℤn →ℤm. y ⊂ {Y} strictly dominates y* ⊂ {Y} (y≻y*) iff:

– (∀i, i < dim(y) → y
i
≤ y*

i
) and (∃i, i < dim(y) → y

i
< y*

i
)

● The Pareto Frontier consists of tuples in {Y} not strongly dominated.

– These are the Pareto efficient choices for a round in S

● Pareto efficient choices can only benefit a player to no player's detriment

● If the Pareto frontier is empty, the design is Pareto efficient.

● We distribute events through the system, defined between and within the
n scheduling groups of each topology level (recipients {R}), using:

– m
0
: outstanding events in r ⊂ {R}

– m
1
: number of rounds since we gave r events

● What is a round? A return from kevent() or epoll(), of course...

copyright © 2012 nick black <nickblack@linux.com> 22

και είπε ο Θεός γενηθήτω φως και εγένετο φωςκαι είπε ο Θεός γενηθήτω φως και εγένετο φως

● Each thread has an efd, prepared with one event mask: a RXfxn on some
signal used internally by libtorque. The system's initially quiescent.

– We do not consider this wake-up signal an event below

● Scheduling groups are sorted, descending, on M = MST
Controlled

/ MST. For

successive tiebreakers on S(M), choose the largest Wiener index relative
to already-sorted processors.

● Each neighborhood initializes a (tiny) shared scoreboard (scoreboarding
is lock-free (actually wait-free), but we can't get around basic sharing).
Uniformly distribute initial indices into a common, large event vector.

● The application, at any time, adds external event sources. Sources might
be configured with allocation triggers, and/or classified as one of self-
collaborative or self-divergent (self-divergent is the default). Lux fiat.

● Eventually, an event source is triggered. The associated thread stops
blocking and considers its e events. If e == 1, handle the event directly.

– Otherwise, calculate the Pareto frontier of p possible moves in
our n-neighborhood. Select one at random, and offload e/2.

– If a slacker existed, it is signaled. Some thread picks up the efd.

● All internally-created event sources are Pareto-distributed (globally).

κ

http://dank.qemfd.net/bugzilla/show_bug.cgi?id=28

copyright © 2012 nick black <nickblack@linux.com> 23

hack on, hack on.hack on, hack on.

● Ground is broken on libtorque

– 365 commits (git log | grep ^commit | wc -l)

– 2232 ChangeLog lines (git log | wc -l)

– 51 bugs filed, 30 outstanding

– Bugs found, reported in: x86info, libcpuset, eglibc, gcc's ipa

● Patches provided for the first three

● Full x86 support, more complete than any other open tool (AFAIK)

● Linux and FreeBSD support

● Just got access to a Sun Niagara 2

– Expect SPARC and OpenSolaris support

● Aggressively open source (git clone git://github.com/dankamongmen/libtorque.git)

– GitHub hosting: http://github.com/dankamongmen/libtorque

– Bugzilla: http://dank.qemfd.net/bugzilla/buglist.cgi?product=libtorque

– Wiki: http://dank.qemfd.net/dankwiki/index.php/Libtorque

– Mailing list: http://groups.google.com/group/libtorque-devel

http://github.com/dankamongmen/libtorque
http://dank.qemfd.net/bugzilla/buglist.cgi?product=libtorque
http://dank.qemfd.net/dankwiki/index.php/Libtorque
http://groups.google.com/group/libtorque-devel

copyright © 2012 nick black <nickblack@linux.com> 24

Thank you, you've been great!Thank you, you've been great!

come write code with me:

let's change the world through high-performance computing.

go jackets, sting 'em!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

