
Linux Plumbers Conference 2015, Seattle WA

Dynamic iSCSI at Scale:
Remote paging at Google

Nick Black <nlb@google.com>
Linux Plumbers Conference, August 2015, Seattle

mailto:nlb@google.com

Linux Plumbers Conference 2015, Seattle WA

Goals of this presentation
❏ Discuss remote paging of binaries at scale, and its motivation

❏ Experimenting with paging binaries and their support data from remote, fast storage
❏ This requires a robust implementation of highly dynamic iSCSI

❏ Share our experience with iSCSI on Linux
❏ What's working well? What could be improved?
❏ How is our use case different from typical ones?
❏ In what ways have we needed to modify the kernel?

❏ Learn what we could do to improve our use of iSCSI / kernel implementation
❏ We'd like to become more involved in Linux's iSCSI and block device projects

2

Linux Plumbers Conference 2015, Seattle WA

Performance problems with local cheap disks
❏ Lowest throughput of the local memory hierarchy
❏ Highest latency of the local memory hierarchy
❏ Unpredictable behavior, especially under load
❏ Fetch + page-in times can dominate a task's runtime
❏ Slow power control transitions
❏ Slowest task in a highly parallelized pipeline can slow down entire job

3

Linux Plumbers Conference 2015, Seattle WA

The cluster enlarges our memory hierarchy
❏ Thousands of machines, each with some number of

❏ Multicore processors with multilevel SRAM/EDRAM caches
❏ DDR3/DDR4 DRAM DIMMs (possibly NUMA)
❏ Flash storage and/or magnetic storage (IOCH and/or PCIe)
❏ Gigabit Ethernet or 10GigE NICs (PCIe, possibly channel-bonded)

❏ Cluster (common power sources, flat intracluster network bandwidth)
❏ Tens of Gbps to each machine from single Tbps switch
❏ Single Tbps to each switch in tens-of-Tbps superblocks
❏ Tens of Tbps to each superblock in Pbps cluster fabric
❏ Tens of thousands of machines in a cluster

4

Linux Plumbers Conference 2015, Seattle WA

Memory hierarchy of generic warehouse computers
❏ DRAM provides hundreds of Gbps, low hundreds of ns latency, fed by either...

❏ PCIe 3.0 x8: 63Gbps, µs latency +
❏ 10GigE NIC: 10Gbps, several µs latency (plus wildly variable remote serving latency)

...or...

❏ Local SATA3: 4.8Gbps, µs latency +
❏ Local SSD: low Gbps, µs latency or
❏ Local HDD: low hundreds of Mbps, tens of ms latency, terrible tail latency

5

Linux Plumbers Conference 2015, Seattle WA

Better performance through network paging pt 1
❏ The SATA3 bus provides 4.8Gbps of usable throughput, but...

❏ A low-cost drive might average ~800Mbps on realistic read patterns
❏ ...and average several tens of milliseconds of seek time for each chunk

❏ The network can provide 10Gbps of usable throughput
❏ PCIe bus and QPI can handle it
❏ Dozens of times more bandwidth than the SATA3 bus
❏ Latencies in microseconds

❏ Disk server can saturate the network
❏ Caching effects among machines leaves common data in disk server DRAM
❏ Disk servers can be outfitted with expensive high-throughput store (PCIe SSD etc.)

❏ Write case can't take advantage of intermachine caching, but the network won't introduce
delay compared to local disk write (it can take advantage of quality remote store)

6

Linux Plumbers Conference 2015, Seattle WA

Better performance through network paging pt 2
❏ Take advantage of demand paging

❏ No longer sucking down the full binary + data set to disk
❏ Grab, on demand, only the pages we need from remote
❏ Fewer total bytes transferred
❏ No useless bytes going through local/remote page caches

❏ Take full advantage of improving technologies
❏ CPU, memory, and disk size are all getting better
❏ Spinning disk seek times, throughput seem at a wall

❏ Spinning disk performance / size ratio is getting steadily worse
(efficient utilization of magnetic storage results in steadily worsening performance)

7

Linux Plumbers Conference 2015, Seattle WA

❏ Packages built as ext4 images+metadata
❏ Kept in global distributed storage (POSIX interface, smart redundancy, etc.)

❏ Pushed on demand to disk servers implementing custom iSCSI target
❏ Lowest-level distributed filesystem nodes: no redundancy at this level
❏ Distribution infrastructure maintains a ratio of reachable copies per task
❏ Pushes new target lists to initiator to allow dynamic target instances

❏ Custom iSCSI initiator drives modified Linux kernel iSCSI-over-TCP transport
❏ Sets up a dm-verity device atop a dm-multipath (MPIO, not MC/S)
❏ Connects to multiple independent remote iSCSI targets
❏ Hands off connections to the kernel, one to an iSCSI session

❏ Makes new connections on connection failure or if instructed

Binaries and support files: read-only iSCSI

8

Linux Plumbers Conference 2015, Seattle WA

Load balancing through dm-multipath
❏ Round-robin: Fill up the IOP queue, then move to the next one

❏ We have purposely set target queue depths set fairly low; would result in rapid cycling
❏ Doesn't allow backing off from a single loaded target

❏ Queue length: Select path based off the shortest queue
❏ Bytes per IOP are dynamic, but prop delay is likely less than round-trip time

❏ Service time: Dynamic recalculation based on throughput

9

Linux Plumbers Conference 2015, Seattle WA

Locally-fetched package distribution at scale pt 1
❏ Alyssa P. Hacker changes her LISP experiment, perhaps a massive neural net

to determine whether ants can be trained to sort tiny screws in space.
❏ Assume 20,000 tasks, immediately schedulable
❏ Each task instance needs 3 packages, totalling .5GB (4Gb)
❏ Expected CPU time of each task, assuming an ideal preloaded page cache, is 120s

❏ 20K tasks * 4Gb compulsory load == 80Tb mandatory distribution
❏ Assuming 10Gbps bandwidth, ideal page cache, and ideal disk...

❏ Serialized fetches: Average task delayed by 4,000s, 97% of total task time, 33x slowdown
Worst case task (8,000s) paces job: 2hr+ to job completion, 6677% slowdown

❏ Fully parallel fetches: Ideal exponential distribution (requiring compute node p2p) requires lg2
(20000) = 15 generations of .4s each, worst case 6s, job requires 126s, 5% slowdown

❏ We can approach .4s total by initiating p2p send before complete reception, .03% slowdown

10

Linux Plumbers Conference 2015, Seattle WA

Locally-fetched package distribution at scale pt 2
❏ Introduce a single oversubscribed compute node fetching to contended disk

❏ The process must evict 128MB of (possibly not yet written-through) data

❏ Another process acquires and releases 128MB, possibly requiring a load from disk

❏ The process pages back in some or all of its 128MB

❏ If each phase takes 2s, 6s is added to the task runtime.

❏ Worst task cases are now 6s, 5% slowdown

❏ In reality, many such delays accumulate for at least one task, all due to paging to/from disk

❏ A damaged sector might result in a 30s delay, 25% slowdown

11

Linux Plumbers Conference 2015, Seattle WA

Remotely-paged packages at scale
❏ No compute node peer-to-peer (p2p retained in target distribution level)

❏ Assume n compute nodes per disk nodes
❏ We can distribute in time approaching one copy with exponential p2p (.4s)
❏ n compute nodes then grab p pages of P total, worst case approaches .4s * (np/P + 1)

❏ Only demanded pages traverse page caches or networks
❏ Fewer compulsory delays offsets lack of last-level p2p
❏ Compulsory delays are smoother over the life of most tasks
❏ Task container can be allocated less memory

❏ Eliminate the annoyances of local spinning disk
❏ Tail latencies are much better controlled -- very few slow / contended reads
❏ Redundancy -- dm-multipath allows us to fail over quickly
❏ Permit radical new physical setups

12

Linux Plumbers Conference 2015, Seattle WA

Coping with an unreliable userspace iscsid
❏ Kernel expects an userspace iSCSI control daemon to always be around

❏ Alas, this expectation cannot always be met (OOMs, crashes, load, etc.)
❏ Restart/schedulability might take time, races result in lost kevents

❏ Becomes particularly problematic in the face of connection errors
❏ We want immediate failover to a standby session via dm-multipath
❏ iSCSI wants to do connection recovery via external agent
❏ No one seems to know whether kernel MC/S works (OpenISCSI initiator doesn't use it)

❏ We disable the connection recovery timeout, immediately hitting error path
❏ Session dies, error bubbles up to dm-multipath, immediate failover
❏ Userspace initiator gets to it eventually and creates a new session for multipath device

13

Linux Plumbers Conference 2015, Seattle WA

User-initiated stop can race with kernel
❏ We still want to deliver the connection stop message, but we don't want to

delay connection teardown waiting for userspace.
❏ Can't just disable userspace-initiated connection stop, as it's necessary for

changing up targets and standard client-side termination.
❏ Added locking to iscsi_sw_tcp_release_conn
❏ Messy interaction between sk->sk_callback_lock and tcp_sw_conn-

>lock
❏ Upstream indicated lack of interest in this solution, but it seems difficult to do

reliable, fast fail recovery with MPIO without it, and upstream doesn't want
MC/S on the initiator side

14

Linux Plumbers Conference 2015, Seattle WA

Why no MC/S (Multiple Connections per Session)?
❏ LIO in-kernel target does support MC/S
❏ Competitor initiator+targets support MC/S
❏ There's at least some support in the kernel dataplane initiator

❏ What is the state of this code? Userspace initiator doesn't use it

❏ MC/S only supports one target within the session
❏ No good for multitarget load balancing

❏ Mailing list has pushed for MPIO (dm-multipath) to be used exclusively
❏ Requires reliable termination of sessions with failed connections (previous slides)
❏ Ignorance of command numbering complicates load balancing
❏ Difficult to rapidly recover from temporarily-unavailable targets

15

Linux Plumbers Conference 2015, Seattle WA

Winning: lower job start times

16

Linux Plumbers Conference 2015, Seattle WA

Winning: faster tasks
❏ These graphs reflect a

3.11.10-based kernel
❏ Missing scsi-mq and other

2014/2015 improvements
❏ Nowhere near theoretical

ideal, but already a big win
❏ 4.x.x rebase ought improve

things for free

17

