

“Precise Exception Semantics in Dynamic Compilation”

Michael Gschwind, Erik Altman
IBM T.J. Watson Research Center

2002 Symposium on Compiler Construction

presented by nick black <nickblack@linux.com> for cs8803dc 2010-02-02

Motivation

● Synchronous exceptions are bound to instructions and
cannot be deferred

● Expose user-managed state, violating Bruening's (2004)
model of even extrinsic compatibility

● Hardware-signaled exceptions mark our PC, not guest's

● Optimization changes user-managed state
(DCE, PRE, code sinking...)

“We're gonna need a bigger ROB.”
(actually, a side table)

Difficulties of virtualizing exceptions:

● Determination of guest PC from host notifications
(only applicable outside interpretive trap detection)

● Dynamic binary translation eliminates bijection!

● Avoid exponential state costs from optimizing

Program Counter Discovery, Part 1/3

● Easy for interpretation. Either:

● Trap case is detected by the VM (interpretive detect), or
● Synchronous exception is delivered before PC update

(or any other externally-visible changes)

● Either way, the source PC is directly available

Program Counter Discovery, Part 2/3

● Things become more difficult for binary translation!

Program Counter Discovery, Part 3/3

● Inefficiencies in Target PC / Source PC map:

● Pair of address pointers for each translated op
 (could be larger than translated source!)

● Given target op might correspond to multiple source ops

● Both can be addressed via translation block map
● Coalesce various instructions of a translation block
● Augment the translation block map with register maps
● See Figure 3.22 and Chapter 4 of the textbook

Code Optimization with Precise Exceptions

● Let us consider the following (contrived) code:

ADDPD %xmm0, %xmm1 # SIMD add into xmm0
MOVAPD 0x20(%ebx), %xmm1 # aligned load into xmm1
ADDPD %xmm0, %xmm1 # SIMD add into xmm0

● First add could be excised via dead code elimination

● ...unless there's a page fault at 0x20(%ebx)

Where else have we seen this issue?

● Out-of-order processor

“Implementing Precise Interrupts in Pipelined Processors”
James Smith and Andrew Pleszkun, IEEE ToC, 1988

● Since IBM 360/91, Tomasulo augmented via ROB:
Reorder buffer feeds results
Exceptions accounted for at ROB graduation

● Static compilation

● Reorganization of code around branches needs fixups
● Exponential state for static CFG amendments
● With access to source, dynamic compilers fixup just-in-time

Low-Cost Recovery from Exceptions

● Retain information regarding modified operations

● Including preservation of input values
● Reconstruct state on the fly when (rarely) needed

● Is this infrequency assumption always valid? What if not?
● p. 197: “maintain [an unoptimized] translation to the side”

● Can't address architecture-invisible elements (intrinsic compatibility)

● Aside: suitable for static compilers?

● Superficial similarity to retaining debugging symbols
● More like running -g binary in a debugger (due to state)
● Method likely unfit for static compilation.

● So it goes.

A Scheduling Algorithm, Part 1/2 (ibid. §3.5.2)

“Out-of-Order Execution Tech. for RT Binary Translators”
Bich Le, 8th Conference on ASPLOS, 1998

● Assume or force single-assign IR (SSA, CPS...)
● Derive the register map:

● Reorder the code:

A Scheduling Algorithm, Part 2/2

● Determine checkpoints:

● Assign registers, paying attention to flag register(s)

● Add compensation code and run that sumbitch

EFLAGS

● Delicious!
● Lots of messy details

(stolen from sandpile.org)

Other Optimizations

● Code sinking
● Repair note inserted in original op slot
● No extra input value preservation necessary

● Unspeculation (PRE)
● DCE along redundant paths, code sinking where needed

● Constant propagation
● Constant folding
● Commoning

● Elimination of ISA-specific condition code updates

● Patch repair code into eliminated code via flag bit!
(Mmm, I especially enjoyed that one)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

